50,474 research outputs found

    Partially and Fully Frustrated Coupled Oscillators With Random Pinning Fields

    Full text link
    We have studied two specific models of frustrated and disordered coupled Kuramoto oscillators, all driven with the same natural frequency, in the presence of random external pinning fields. Our models are structurally similar, but differ in their degree of bond frustration and in their finite size ground state properties (one has random ferro- and anti-ferromagnetic interactions; the other has random chiral interactions). We have calculated the equilibrium properties of both models in the thermodynamic limit using the replica method, with emphasis on the role played by symmetries of the pinning field distribution, leading to explicit predictions for observables, transitions, and phase diagrams. For absent pinning fields our two models are found to behave identically, but pinning fields (provided with appropriate statistical properties) break this symmetry. Simulation data lend satisfactory support to our theoretical predictions.Comment: 37 pages, 7 postscript figure

    Smoothening of Depinning Transitions for Directed Polymers with Quenched Disorder

    Full text link
    We consider disordered models of pinning of directed polymers on a defect line, including (1+1)-dimensional interface wetting models, disordered Poland--Scheraga models of DNA denaturation and other (1+d)-dimensional polymers in interaction with columnar defects. We consider also random copolymers at a selective interface. These models are known to have a (de)pinning transition at some critical line in the phase diagram. In this work we prove that, as soon as disorder is present, the transition is at least of second order: the free energy is differentiable at the critical line, and the order parameter (contact fraction) vanishes continuously at the transition. On the other hand, it is known that the corresponding non-disordered models can have a first order (de)pinning transition, with a jump in the order parameter. Our results confirm predictions based on the Harris criterion.Comment: 4 pages, 1 figure. Version 2: references added, minor changes made. To appear on Phys. Rev. Let

    Two Pinning Models with Markov disorder

    Full text link
    Disordered pinning models deal with the (de)localization tran- sition of a polymer in interaction with a heterogeneous interface. In this paper, we focus on two models where the inhomogeneities at the interface are not independent but given by an irreducible Markov chain on a finite state space. In the first model, using Markov renewal tools, we give an expression for the annealed critical curve in terms of a Perron-Frobenius eigenvalue, and provide examples where exact computations are possible. In the second model, the transition matrix vary with the size of the system so that, roughly speaking, disorder is more and more correlated. In this case we are able to give the limit of the averaged quenched free energy, therefore providing the full phase diagram picture, and the number of critical points is related to the number of states of the Markov chain. We also mention that the question of pinning in correlated disorder appears in the context of DNA denaturation

    Vortex Molecular Crystal and Vortex Plastic Crystal States in Honeycomb and Kagome Pinning Arrays

    Full text link
    Using numerical simulations, we investigate vortex configurations and pinning in superconductors with honeycomb and kagome pinning arrays. We find that a variety of novel vortex crystal states can be stabilized at integer and fractional matching field densities. The honeycomb and kagome pinning arrays produce considerably more pronounced commensuration peaks in the critical depinning force than triangular pinning arrays, and also cause additional peaks at noninteger matching fields where a portion of the vortices are located in the large interstitial regions of the pinning lattices. For the honeycomb pinning array, we find matching effects of equal strength at most fillings B/B_\phi=n/2 for n>2, where n is an integer, in agreement with recent experiments. For kagome pinning arrays, pronounced matching effects generally occur at B/B_\phi=n/3 for n>3, while for triangular pinning arrays pronounced matching effects are observed only at integer fillings B/B_\phi=n. At the noninteger matching field peaks in the honeycomb and kagome pinning arrays, the interstitial vortices are arranged in dimer, trimer, and higher order n-mer states that have an overall orientational order. We call these n-mer states "vortex molecular crystals" and "vortex plastic crystals" since they are similar to the states recently observed in colloidal molecular crystal systems. We argue that the vortex molecular crystals have properties in common with certain spin systems such as Ising and n-state Potts models. We show that kagome and honeycomb pinning arrays can be useful for increasing the critical current above that of purely triangular pinning arrays.Comment: 19 pages, 22 postscript figures. Version to appear in Phys. Rev.

    Localization and delocalization of random interfaces

    Full text link
    The probabilistic study of effective interface models has been quite active in recent years, with a particular emphasis on the effect of various external potentials (wall, pinning potential, ...) leading to localization/delocalization transitions. I review some of the results that have been obtained. In particular, I discuss pinning by a local potential, entropic repulsion and the (pre)wetting transition, both for models with continuous and discrete heights.Comment: Published at http://dx.doi.org/10.1214/154957806000000050 in the Probability Surveys (http://www.i-journals.org/ps/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Random pinning in glassy spin models with plaquette interactions

    Get PDF
    We use a random pinning procedure to study amorphous order in two glassy spin models. On increasing the concentration of pinned spins at constant temperature, we find a sharp crossover (but no thermodynamic phase transition) from bulk relaxation to localisation in a single state. At low temperatures, both models exhibit scaling behaviour. We discuss the growing length and time scales associated with amorphous order, and the fraction of pinned spins required to localize the system in a single state. These results, obtained for finite dimensional interacting models, provide a theoretical scenario for the effect of random pinning that differs qualitatively from previous approaches based either on mean-field, mode-coupling, or renormalization group reatments.Comment: 15 pages, 9 fig

    Mode-Locking in Driven Disordered Systems as a Boundary-Value Problem

    Get PDF
    We study mode-locking in disordered media as a boundary-value problem. Focusing on the simplest class of mode-locking models which consists of a single driven overdamped degree-of-freedom, we develop an analytical method to obtain the shape of the Arnol'd tongues in the regime of low ac-driving amplitude or high ac-driving frequency. The method is exact for a scalloped pinning potential and easily adapted to other pinning potentials. It is complementary to the analysis based on the well-known Shapiro's argument that holds in the perturbative regime of large driving amplitudes or low driving frequency, where the effect of pinning is weak.Comment: 6 pages, 7 figures, RevTeX, Submitte
    • …
    corecore